
Appendix

Table of Contents
A Additional Experiments A1

A.1 Real World: How much data is necessary? . A1

B Architecture Design Choices A1

C Details on Real World Tasks A2

D Experimental Results A3
D.1 Numerical Results for Simulation Experiments A3
D.2 Real Experiments . A3

E Pretrained Feature Visualization A4

A Additional Experiments

A.1 Real World: How much data is necessary?

Figure 7: Comparing the number of
training demos on Place Bag. With
as few as 60 demos, SpawnNet ex-
ceeds LfS+aug+d with 90 demos.

Given SpawnNet’s success in the real-world experiments with
little data, we aim to see how well our method generalizes given
differing amounts of demonstrations. To do so, we additionally
evaluate SpawnNet+d with 30, 60, and all 90 demonstrations.
For comparison, we additionally include LfS+aug+d with 90 de-
mos; results are reported in Table 7.

SpawnNet+d performs surprisingly well with few demonstra-
tions; it approaches the performance of the LfS+aug+d base-
line with fewer than a third of the training demonstrations and
exceeds it with two-thirds, demonstrating the effectiveness of
dense features even with few demonstrations.

B Architecture Design Choices

In this section, we describe specific choices in the architectures that we evaluate in our experiments.

Encoders. When comparing pretrained encoders, we control for similar parameter counts. MVP
and DINO both use ViT-S (22M parameters), which has 12 layers. R3M uses ResNet-50 (23M
parameters). For all encoders, we process each frame individually with the encoder, and concatenate
representations across stacked frames and views before passing it into the MLP.

We further expand on our learned encoder architectures:

• Learning-from-scratch architecture: Our LfS architecture follows the deep convolutional
encoder described in [33], with 128-channel 3x3 convolutions and 128-channel residual layers
in each block. We detail this architecture in Figure 8.

• SpawnNet: For SpawnNet, we use ViT-S/8 with a stride of 8, resulting in spatial attention
features of shape [384, 28, 28]. SpawnNet uses three adapters, taking pre-trained features
from the 6th, 9th, and 12th layers of the vision transformers respectively and mapping them
to 64 channels (see Section 3.2) Each adapted 64-channel feature is then concatenated to the
current learned 64-channel feature before a 128-channel residual block.

A1

3x3 MaxPool, stride 2

3x3 Conv, stride 3

3x3 ResBlock[128 ch.]
x 3

4x4 Conv, stride 4

3x3 ResBlock

MLP

ReLU

3x3 Conv, stride 3

3x3 Conv, stride 3

ReLU

ResBlock

x

a

f(x) + x

o

Figure 8: The convolutional encoder we consider for the LfS baseline. The initial 4x4 convolution transforms
the input from its initial channel dimension to 128.

MLP. We parameterize the MLP for all encoders using the same architecture, with hidden layers of
size [256, 128]. The feature vector extracted from the encoder is flattened first before being passed
in.

Model Sizes and Inference Time. We report the number of trainable parameters and inference
time for models trained on xArm tasks in Table 4. We note that Inference is the real-time inference
speed; Cached Inference is the time taken for a forward pass with pre-calculated features (i.e. for
training). Our LfS baseline has similar numbers of trainable parameters and cached inference speed
as SpawnNet. Additionally, a SpawnNet backbone has approximately the same inference speed as a
frozen pre-trained backbone.

Model Trainable Params (M) Inference (ms) Cached Inference (ms)
DINO 0.84 57.27 0.27
Spawn-DINO 14.86 59.17 2.91
R3M 4.25 11.64 0.16
Spawn-R3M 15.02 14.15 2.83
LfS 15.11 2.47 2.47

Table 4: Inference times for different models. The increase in parameters between pre-trained and SpawnNet
is from the use of dense spatial features instead of the CLS token.

Data Augmentations: Following Hansen et al. [14], we consider random shift and random color
jitter data augmentations. For simulation tasks, we only apply data augmentation to LfS+aug with
paug = 0.5. For real tasks, we apply data augmentation to all methods with paug = 0.5. We provide
psuedocode for our implementations below:

import torchvision.transforms as T

sim_aug = T.Compose([# random shift
T.Pad(5, padding_mode=’edge’),
T.RandomResizedCrop(size=224, scale=(0.7, 1.0))])

real_aug = T.Compose([# random shift (no pad) and color jitter
T.RandomResizedCrop(size=224, scale=(0.7, 1.0)),
T.ColorJitter(brightness=0.3)])

C Details on Real World Tasks

We provide more details about the real-world tasks, including the total number of demos, the break-
down of demos per instance, and further details about the experimental setup.

A2

Place Bag: 102 total demonstrations, with 34 demonstrations split across a red, black, and brown
bag. Bags are placed in front of the robot, with variations in the x-y position (within a 1’x1’ box)
and the rotation (within a 90 degree range). The stand is kept fixed on the table. The table itself
translates up and down within a 3” range, adding height variation as well.

Hang Hat: 95 total demonstrations, with 30 demonstrations on a teal hat, 33 demonstrations on a
black hat, and 32 on a navy hat. Demonstrations grab above the bill of the hat, and hats are placed
on a fixed stand with varying rotation within a 90 degree range. The table height remains fixed.

Tidy Tools: 90 total demonstrations, with 15 per drawer. We define a drawer as a level on the
shelf, and leave some ”levels” as novel instances; this tests the policy’s ability to generalize learned
features spatially. We additionally vary the tool being manipulated between two different handled
tools, and split these with 45 total demonstrations per tool across 6 different drawers. Tools are
placed with a rotation within a 90 degree range inside of a 5”x5” box. Different drawers are placed
with a rotation within a 45 degree range inside of a 5”x5” box. The table height remains fixed.

Evaluation. We place the novel instances within the training instances’ pose variations as described
above. Following [13], we additionally award partial credit for tasks which consist of multiple
manipulation skills; for example, in the Hang Hat task, if the policy grasps the hat but is unable to
hang it, we count the grasp as a success and the hang as a failure for a score of 0.5. The success
rates are reported as the average success rate per instance. We perform 5 rollouts for each instance.

D Experimental Results

We produce numeric tables for all experiments presented.

D.1 Numerical Results for Simulation Experiments

The results in Table 5 correspond to the analysis presented in Section 4.1.

Method Open Door Open Drawer
Train Val Train Val

SpawnNet 87.3 ± 1.6 58.3 ± 5.1 85.7 ± 2.8 61.1 ± 3.2
LfS+aug 90.5 ± 2.8 53.3 ± 2.4 81.0 ± 2.8 61.7 ± 2.4
R3M 92.1 ± 4.2 42.5 ± 5.1 82.5 ± 3.2 50.3 ± 1.8
MVP 68.3 ± 4.2 43.8 ± 4.7 58.7 ± 4.2 30.0 ± 1.6
PointCloudRL (expert) 89.5 ± 0.0 14.4 ± 0.0 95.2 ± 0.0 65.8 ± 0.0

Table 5: Numerical results for the simulation experiments.

D.2 Real Experiments

The results in Table 6 correspond to the analysis presented in Section 4.2.

Method Place Bag Hang Hat Tidy Tools
Train Val Train Val Train Val

SpawnNet+d 93.3±3.8 86.7±6.4 100±0.0 80.0±8.5 91.1±3.6 88.6±4.4
SpawnNet 83.3±5.6 76.7±10.8 93.3±6.1 78.3±6.4 90.0±2.4 74.3±6.3
LfS+aug+d 93.3±4.2 66.7±7.6 76.7±15.2 60.0±10.5 44.4±9.4 33.3±8.4
R3M 93.3±3.8 20.0±7.1 66.7±13.9 20.0±10.8 38.9±7.4 15.2±4.8

Table 6: Numerical performance on the real world tasks. We report the average of the total success rate for
each instance. The bar denotes standard error.

A3

E Pretrained Feature Visualization

Following the results presented in Figure 6, we present more examples of the learned features from
the adapter layers. More visualizations can also be found on our project website.

Pick

Hang

Seen Unseen

Figure 9: Visualized adapter features for the Hang Hat task. When grasping the hat, the adapter highlights
relevant parts of the hat, such as the brim and front. When hanging the hat, the adapter highlights relevant parts
of the hat, such as the back edge.

Pick

Place

Seen Unseen Level Unseen Instance

Figure 10: Visualized adapter features for the Tidy Tools task. When grasping the tool, the adapter highlights its
handle, even with novel drawers in the background. When placing the tool in the drawer, the adapter highlights
the drawer’s front edge.

A4

	Introduction
	Related Works
	Method
	Vision Transformer Preliminary
	SpawnNet Architecture
	Visuomotor Policy Learning

	Experiments
	Simulation Experiments
	Real World Experiments
	What does SpawnNet learn from the pre-trained network?
	Ablations
	SpawnNet with other pre-trained networks
	Comparison with Transfer Learning Methods

	Limitations and Conclusions
	Appendix
	 Appendix
	Additional Experiments
	Real World: How much data is necessary?

	Architecture Design Choices
	Details on Real World Tasks
	Experimental Results
	Numerical Results for Simulation Experiments
	Real Experiments

	Pretrained Feature Visualization

