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Abstract:
To perform robot manipulation tasks, a low-dimensional state of the environment
typically needs to be estimated. However, designing a state estimator can some-
times be difficult, especially in environments with deformable objects. An alter-
native is to learn an end-to-end policy that maps directly from high-dimensional
sensor inputs to actions. However, if this policy is trained with reinforcement
learning, then without a state estimator, it is hard to specify a reward function
based on high-dimensional observations. To meet this challenge, we propose a
simple indicator reward function for goal-conditioned reinforcement learning: we
only give a positive reward when the robot’s observation exactly matches a target
goal observation. We show that by relabeling the original goal with the achieved
goal to obtain positive rewards [1], we can learn with the indicator reward func-
tion even in continuous state spaces. We propose two methods to further speed up
convergence with indicator rewards: reward balancing and reward filtering. We
show comparable performance between our method and an oracle which uses the
ground-truth state for computing rewards. We show that our method can perform
complex tasks in continuous state spaces such as rope manipulation from RGB-D
images, without knowledge of the ground-truth state.

Keywords: Self-supervised, goal-conditioned reinforcement learning

1 Introduction

Figure 1: An illustration of the rope push-
ing task. The Sawyer robot is given an im-
age of the current configuration of the rope
and an image of the goal configuration (illus-
trated as the translucent rope) and the task is
to push the rope to the goal configuration.

To perform robot manipulation tasks, a low dimensional
state of the environment typically needs to be estimated.
In reinforcement learning, this state is also used to com-
pute the reward function. However, designing a state es-
timator can be difficult, especially in environments with
deformable objects, as shown in Figure 1. An alternative
is to learn an end-to-end policy that maps directly from
high-dimensional sensor input to actions. However, with-
out a state estimator, it is hard to specify a reward function
based on high-dimensional observations.

Past efforts to use reinforcement learning for robotics
have avoided this issue in a number of ways. One com-
mon approach is to use extra sensors to determine the
state of the environment during training, even if such
sensors are not available at test time. Examples of this
include using another robot arm to hold all relevant ob-
jects [2], placing an IMU sensor [3, 4] or motion capture
markers on such objects [5], or ensuring that all relevant objects are placed on scales [6].

However, such instrumentation is not always easy to set up for each task. This is especially true
for deformable object manipulation, such as rope or cloth manipulation, in which every part of the
object must be instrumented in order to measure the full state of the entire object. Attaching such
sensors to food or granular material would present additional difficulties.
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We present an alternative approach for goal-conditioned reinforcement learning for specifying re-
wards using raw (e.g. high-dimensional and continuous) observations without requiring explicit
state estimation or access to the ground-truth state of the environment. We achieve this using a
simple indicator reward function, which only gives a positive reward when the robot’s observation
exactly matches a target goal observation. Naturally, in continuous state spaces, we do not expect
any two observed states to be identical. Surprisingly, we show that we can learn with such an in-
dicator reward, even in continuous state spaces, if we use goal relabeling [7, 1], which relabels the
original goal with the achieved observation such that a positive reward is given. As the indicator
rewards produce extreme sparse positive rewards, we further introduce reward balancing to balance
the positive and negative rewards, as well as reward filtering to filter out uncertain rewards.

We show theoretically that the indicator reward results in a policy with bounded suboptimality com-
pared to the ground-truth reward. We also empirically show comparable performance between our
method and an oracle which uses the ground-truth state for computing rewards, even though our
method only operates on raw observations and does not have access to the ground-truth state. We
demonstrate that an indicator reward can be used to teach a robot complex tasks such as rope manip-
ulation from RGB-D images, without knowledge of the ground-truth state during training. Videos
of our method can be found at https://sites.google.com/view/image-rl.

2 Related Work

2.1 Obtaining Ground-truth State for Training

Adding sensors: To obtain ground-truth states for calculating rewards, one approach is to perform
state estimation. However, such an approach can be noisy and challenging to implement, especially
for the deformable objects that we study in this work. Another approach is to add extra sensors
during training to accurately record the state. For example, in past work, one robot arm (covered
with a cloth at training time) is used to rigidly hold and move an object, while another robot arm
learns to manipulate the object [2]. In such a case, the object position can be inferred directly from
the position of the robot gripper that is holding it. In other work on teaching a robot to open a
door, an IMU sensor is placed on the door handle to determine the rotation angle of the handle and
whether or not the door has been opened [3, 4]. One can also ensure that all relevant objects for
a task are placed on scales [6] or affixed with motion capture markers to obtain a precise estimate
of their position [5]. However, such instrumentation is challenging for deformable objects, granular
material, food, or other settings. Further, such instrumentation is costly and time-consuming to
setup; hence most of these previous approaches assume that such instrumentation is only available
at training time and these methods do not allow further fine-tuning of the policy after deployment.

Training in simulation: Another common approach is to train the policy entirely in simulation in
which ground-truth state can be obtained from the simulator. [8, 9, 10, 11, 12]. Many approaches
have been explored to try to transfer such a policy from simulation to the real world, such as domain
randomization [13] or building a more accurate simulator [14, 15]. However, obtaining an accurate
simulator is often very challenging, especially if the simulator differs from the real-world in un-
known ways. Further, building the simulator itself can be fairly complex. Because these methods
require the ground-truth state to obtain the reward function, they require training in a simulator and
do not allow further fine-tuning after deployment in the real world; our method, in contrast, does not
require the ground-truth state for the reward function.

2.2 Robot Learning without Ground-truth State

Learning a reward function without supervision: One line of work for learning a reward function
is to first learn a latent representation and then derive the reward function based on the distance in
the embedding space, such as cosine similarity. The representation can be learned by maximizing
the mutual information between the achieved goal and the intended goal [16], reconstruction of the
observation with VAE [17], or learning to match keypoints with spatial autoencoders [18]. Recent
work also explicitly learns a representation that is suitable for gradient based optimizer and then
use it for specifying rewards [19]. However, there is no guarantee that these learned representation
are suitable for deriving rewards for control. In addition, if the representation is pre-trained, it may
also be incorrect in some parts of the observation space which can be exploited by the agent. Our
approach is much simpler in that the reward function does not have any parameters that need to be
learned and we empirically show better performance to some reward learning approaches.
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Changing the optimization: Another approach is to forego maximizing a sum of rewards as is typ-
ically done in reinforcement learning and instead optimize for another objective. For example, one
method is to choose one-step greedy actions based on a learned one-step inverse dynamics model;
after training, the policy is then applied directly to a multi-step goal [20]. An alternative method is to
learn a predictive forward dynamics model directly in a high-dimensional state space and use visual
model-predictive control [21, 22, 23, 24, 25]. Although these methods have shown some promise,
predicting future high-dimensional observations (such as images or depth measurements) is chal-
lenging. Another approach is to obtain expert demonstrations and define an objective as trying to
imitate the expert [26, 27, 28, 29]. Our approach, however, applies even when demonstrations are
not available.

2.3 Manipulating Deformable Objects

Deformable object manipulation presents many challenges for both perception and control. One
approach to the perception problem is to perform non-rigid registration to a deformable model of
the object being manipulated [30, 31, 32, 33, 34, 35, 36, 37]. However, such an approach is often
slow, leading to slow policy learning, and can produce errors, leading to poor policy performance.
Further, such an approach often requires a 3D deformable model of the object being manipulated,
which may be difficult to obtain. Our approach applies directly to high-dimensional observations of
the deformable object and does not require a prior model of the object being manipulated.

3 Problem Formulation

In reinforcement learning, an agent interacts with the environment over discrete time steps. In
each time step t, the agent observes the current state st and takes an action at. In the next time
step, the agent transitions to a new state st+1 based on the transition dynamics p(st+1|st, at) and
receives a reward rt+1 = r(st, at, st+1). The objective for the agent is to learn a policy π(at|st)
that maximizes the expected future return R = E

[∑∞
t=0 γ

trt+1

]
, where γ is a discount factor.

3.1 Goal-reaching Reinforcement Learning

In order for the agent to learn diverse and general skills, we define a goal reaching MDP [38, 1]
as follows: In the beginning of each episode, a goal state sg is sampled from a goal distribution
G. We learn a goal conditioned policy π(at|st, sg) that tries to reach any goal state from the
goal distribution. We use a goal conditioned reward function rt = r(st+1, sg) and optimize for
Esg∼G

[∑∞
t=0 γ

trt
]
. The transition dynamics p(st+1|st, at) of the environment remain independent

of the goal.

In many real-world scenarios, it is often difficult to construct a well-shaped reward function. Past
work has shown that sparse rewards, combined with an appropriate learning algorithm, can achieve
better performance than poorly-shaped dense rewards in goal-reaching environments [1]. We thus
define a sparse reward function that only makes the binary decision of whether the goal is reached or
not. Specifically, let S+(sg) be a subset of the state space such that any state in this set is determined
to be sufficiently close to sg (in some unknown metric); in other words, if the environmental state
is within S+(sg), then the task of reaching sg can be considered to be achieved.1 Naturally, we can
assume that sg ∈ S+(sg). A binary reward function can then be defined as

r(st+1, sg) =

{
R+ st+1 ∈ S+(sg)

R− st+1 /∈ S+(sg),
(1)

where R+ and R− are constants representing the rewards received for achieving the goal and failing
to achieve the goal, respectively.

3.2 Rewards from Images

In many cases, the ground-truth state st is unknown and we cannot directly use the true reward
function defined in Equation 1. Instead, the agent observes high-dimensional observations ot from

1S+ is a function that maps from the state space to a subset of the space.
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sensors, from which we must instead define a proxy reward function r̂(ot+1, og). The question now
becomes how to choose r̂ to be optimal for reinforcement learning?

The most common approach in robotics is to perform state estimation. However, in many cases, the
state estimator might be hard to obtain, such as for deformable object manipulation, e.g. laundry
folding or food preparation. We therefore investigate whether an alternative reward function that
does not depend on state estimation can be used. Specifically, let us consider a general reward
function defined in observation space of the form

r̂(ot+1, og) =

{
R+ ot+1 ∈ Ô+(og)

R− ot+1 /∈ Ô+(og),
(2)

where og is a representation of the goal in observation space and Ô+(og) is a subset of the obser-
vation space for which we will give positive rewards. A number of past approaches have proposed
various methods for learning an observation-based reward function r̂(ot+1, og) [16, 17, 39, 19].
However, these approaches do not analyze the properties needed by such a reward function to en-
able optimal learning. Next we will investigate trade-offs between different choices of Ô+(og) and
how they will affect policy training time when trained with rewards of r̂(ot+1, og).

4 Reward Misclassifications

Figure 2: As we increase false negative/positive rewards, the learning
curves with false positive rewards are affected more severely.

We will now investigate how
to design a good proxy reward
function r̂(ot+1, og), based on
raw sensor observations, that we
can use to train the policy; we
desire for the policy trained with
r̂(ot+1, og) to optimize the orig-
inal reward r(st+1, sg) based on
the ground-truth state (which we
do not have access to). Our
first insight into choosing a good
proxy reward function r̂(ot+1, og) is that we should think about reward functions in terms of false
positives and false negatives. Let us define a false positive reward to occur when the agent receives
a positive reward based on our proxy reward function r̂(ot+1, og) when it would have received a
negative reward based on the original reward function r(st+1, sg). In other words, suppose that an
unknown function f maps from an observation to its corresponding ground-truth state, st = f(ot).
Then a false positive reward occurs when ot+1 ∈ Ô+(og) while f(ot+1) /∈ S+(sg). Similarly, a
false negative reward can be defined.

Intuitively, both false positive rewards and false negative rewards can negatively impact learning.
However, for any estimated reward function r̂(ot+1, og), we will have either false positives or false
negatives (or both) unless we have access to a perfect state estimator. To design a good proxy reward
function, we must ask: which will more negatively affect learning: false positives or false negatives?

The two types of mistakes are not symmetric. As we will see, a false positive reward can signif-
icantly hurt policy learning, while a false negative reward is much more tolerable. Under a false
positive reward, the agent receives a positive reward (under the proxy reward function r̂(o, og)) for
reaching some observation o, even though the agent should receive a negative reward based on the
corresponding ground-truth state f(o) under the original reward function r(st, sg). This false posi-
tive reward will encourage the agent to continue to try to reach the state f(o), even though reaching
this state does not achieve the original task since f(o) /∈ S+(sg).

On the other hand, false negative rewards are much more tolerable. Under a false negative, the agent
observes some observation o such that f(o) ∈ S+(sg) but the agent receives a negative reward.
However, if the agent still receives a positive reward for some other observation o′ such that f(o′) ∈
S+(sg), then the agent can still learn to reach the goal states S+(sg), though learning might be
slower and the learned policy may be suboptimal.

We provide a simple example to verify this intuition. Consider a robot arm reaching task, with
the observation space O ∈ R3 being the 3D position of the end-effector (EE). The action space
A ∈ R3 controls the position of EE. The true reward is defined by O+(og) = {o | ‖o− og‖2 < ε}.
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We define two types of noisy reward functions used for training. The reward function r̂FP gives
the same rewards as the true reward function, except that with a probability of pFP (False Positive
Rate), a negative reward will be flipped to a positive reward. The reward function r̂FN can be
similarly defined, where a positive reward will be flipped to a negative reward with a probability of
pFN (False Negative Rate). For this experiment, we use a standard reinforcement learning algorithm
DDPG [40] combined with goal relabeling [1]. The learning performance of this same algorithm
with different noisy rewards can be shown in Figure 2. We can see that the agent is able to learn
the task even with a very large false negative rate. But when the false positive rate increases, the
performance sharply decreases.

5 Approach

5.1 Indicator Rewards

Following this idea, we propose using a proxy reward function that does not have any false positive
rewards. To do so, we will use an extreme reward function of Ô+(og) = {og}. In other words, we
will use an indicator reward function:

r̂ind(ot+1, og) =

{
R+ ot+1 = og
R− ot+1 6= og,

(3)

It should be clear that this reward function will have no false positives, since the reward is positive
only if ot+1 = og , which implies that f(ot+1) = f(og), or equivalently, st+1 = sg . As sg ∈ S+(sg)
by definition, all positive rewards are true positives. However, this reward function is extremely
sparse and has many false negatives. In fact, without goal relabeling, in continuous state spaces, we
would expect all rewards to be negative under this indicator reward function, as no two observations
in continuous spaces will ever be identical. Next, we will describe how to learn with this reward
function with goal relabeling.

5.2 Goal Relabeling for Off-policy Learning

Fortunately, for off-policy multi-goal learning, we can adopt the goal relabeling technique intro-
duced in [7, 1] to learn the goal-conditioned Q-function. Suppose that some transitions (ot, at, ot+1)
are observed when the agent takes an action at ∼ π(ot, og) with a goal of og . Because Q-learning
is an off-policy reinforcement learning algorithm, we can replace the goal observation og with any
other observation og′ in our Bellman update of the Q-function. This works because the transition
dynamics p(st+1|st, at), and likewise the observation transition dynamics p(ot+1|ot, at), are inde-
pendent of the goal og . Specifically, for some transitions, we will choose to replace og with the
observation ot+1. By re-labeling og with ot+1 and using our indicator reward function, we will have
that r̂ind(ot+1, og) = r̂ind(ot+1, ot+1) = R+. Thus, using goal relabeling, we can get positive
rewards, even when using an indicator reward function in continuous state spaces.

5.3 Reward Balancing and Filtering

As mentioned above, after sampling a batch of data, we train the Q-function with goal relabeling.
We use three different strategies for choosing which goals to use for relabeling: with probability p1,
we relabel og with ot+1, which will receive a positive reward under our indicator reward function.
With probability p2, we relabel the goal og with ot′ with an observation from some future time t′
step within the episode. The indicator reward function will most likely give a negative reward in this
case, which is possibly a false negative because the new goal is possibly considered achieved based
on the state-based, ground-truth reward funciton. Finally, with probability p3, we use the original
goal (with no relabeling), which will again most likely give a negative reward under the indicator
reward function; as before, this might be a false negative.

Reward balancing: We refer to “reward balancing” as setting p1 = p2 = 0.45 and p3 = 0.1,
leading us to receive positive rewards approximately 0.45 of the time and negative rewards approx-
imately 0.55 of the time. Thus the ratio of positive and negative rewards that we use to train the
Q-function are approximately balanced, even with indicator rewards. From another perspective, p1
and p2 determine the relative frequency between providing positive rewards and propagating rewards
to other timesteps in the episode. Additionally, training with a small fraction of the original goals
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(i.e. p3) can be seen as a regularization which ensures that the distribution of the relabeled goals
moves towards the original goal distribution.

Reward filtering: While false negative rewards do not hurt learning as much as false positives, we
still wish to avoid them if possible to improve the convergence time of the learned policy. We achieve
this using “reward filtering,” in which we filter out transitions that we suspect of having a high chance
of being false negatives. We refer to “reward filtering” as discarding a sampled transition if its Q
value is above a threshold q0. If the assigned reward is negative based on the proxy reward function
but the Q-value is sufficiently high, then there is a chance that this reward a false negative. To reduce
the fraction of false negatives, we filter out such transitions and do not use them for training.

We can estimate how to set the threshold q0 as follows: for a given transition (ot, at, ot+1), if
ot+1 = og , we know that r̂ind(ot+1, og) = R+. In this case, Q∗(ot, at, og) = R+/(1 − γ), where
Q∗ is the optimal Q-function, assuming the optimal policy will continue to receive (discounted)
positive rewards in the future. Similarly, if ot+1 6= og , then r̂ind(ot+1, og) = R−. Since we
know that the policy starting from ot will thus receive at least one negative reward before receiving
positive rewards, then Q∗(ot, at, og) ≤ R− + γR+/(1 − γ). Thus, we can set a threshold q0,
where R− + γR+/(1 − γ) < q0 < R+/(1 − γ); if we find that Q(ot, og, at) > q0, then the
corresponding reward r̂ind(ot+1, og) is likely to be a false negative (assuming that the Q-function
has been trained well); we thus filter out such rewards, to reduce the number of false negatives that
we use for training. We can see that q0 is set to a rather conservative fitlering value. Additionally, the
Q-function is initialized to a relatively low value to avoid overestimation of the Q-function which
can lead to incorrect filtering in the beginning of the training.

6 Analysis

In this section, we analyze the performance of learning with indicator rewards. We first interpret the
goal conditioned Q-function as a measure of the time it takes for the agent to reach one observation
from another.

6.1 Minimum Reaching Time Interpretation

Let us define d = Dπ(ot, at, Ô+(og)) as the number of time steps it takes for the policy π to go from
the current observation ot, starting with action at, to reach the set Ô+(og) of goal observations. For
simplicity, we assume that, once the agent receives a positive reward, it will take actions to continue
to receive positive rewards. The Q-function can be written as

Qπ(ot, at, og) = R− + γR− + ...+ γd−1R− + γdR+ + γd+1R+ + ...

=
γd

1− γ (R+ −R−) +
1

1− γR−.
(4)

Now it can be easily seen that, as long as R+ > R−, Qπ is strictly monotonically decreasing w.r.t.
d. As such, maximizing Qπ over π is equivalent to minimizing the time the agent takes to reach the
goal Ô+(og). Note that this is true for varying definitions of Ô+(og); thus the policy trained under
the true reward function (Equation 1) will minimize Dπ(ot, at, O+(og)) whereas the policy trained
under the indicator reward function will minimize Dπ(ot, at, {og}) (slightly overloading notation
for Dπ). Below we will show how this interpretation of the policy’s behavior at convergence can
lead to a simple analysis of the suboptimality of the learned policy under the indicator reward.

6.2 Analysis of Sub-optimality

Due to the false negative rewards given by the indicator function r̂ind, the learned policy may not
be optimal with respect to the original reward function r(st+1, sg) defined in Equation 1. Here we
give the worst case bound for the policy learned with the indicator reward. Following the minimum
reaching time interpretation of the previous section, we evaluate the performance of the policy in
terms of the time it takes to reach the set of goal observations O+(og) from the current observation.
Given ot, og , denote t1 as the minimum number of time steps to reach from ot to the set of true goal
observations, i.e. t1 = D(ot, O+(og)). Let t2 = D(ot, og) be the minimum time to reach from ot
to og . Define the diameter of this goal observation set as d = max{D(o1, o2)|o1, o2 ∈ O+(og)}.
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From the optimality of t2, we know that

t2 ≤ D(ot, o) +D(o, og),∀o ∈ O+(og).

Thus,

t2 ≤ min
o∈O+(og)

D(ot, o) +D(o, og) ≤ t1 + d. (5)

From the analysis in the previous section, the optimal policy which optimizes the indicator reward
will reaches og in t2 time steps; since og ∈ O+(og), we know that this policy will reach O+(og) in
some time t3 ≤ t2. Also recall that we have defined t1 such that the optimal policy under the true
reward function of Equation 1 will reach O+(og) in t1 steps. Thus t3/t1 ≤ (t1 + d)/t1 is an upper
bound on the suboptimality of the policy trained under the indicator reward, at convergence.

7 Experiments

Our experiments address the following questions:

1. In the case of visual input, how much are the sample efficiency and the final performance
affected without assuming access to the ground-truth reward?

2. How much does reward balancing and filtering improve learning efficiency?
3. Can our method scale to real world robotic tasks?

We denote our method, which uses indicator rewards with reward balancing and filtering, as Indi-
cator+Balance+Filter. We compare our method with the following baselines:

• Oracle: This method assumes access to the ground-truth reward from state space r(st, sg).
• Indicator: This is an ablation of our method, without reward balancing and filtering.
• Auto Encoder (AE): We train an autoencoder with an L2 reconstruction loss of the image

observation, jointly with the RL agent. We then use cosine similarity in the learned embed-
ding space to provide dense rewards, as similarly compared in [16]. Specifically, assuming
the learned encoding of an observation o is φ(o) after L2 normalization, the reward will be
r(o, og) = max(0, φ(o)Tφ(og)).

• Variational Auto Encoder (VAE): Similarly to the AE baseline, a VAE is jointly trained
with the RL agent to provide rewards, as done in [17]. For a fair comparison, the goal
sampling strategy for this baseline is kept the same a other approaches.

• Distributional Planning Network (DPN) [19]: DPN aims to learn a representaiton that is
suitable for a gradient based planner to reach a goal observation. Following [19], we first
pre-train the DPN using samples collected from a random policy and then use the learned
representation for giving rewards. Note that in the plots below, we do not count these
samples used for the pre-training.

Only Oracle uses the ground-truth, state-based reward function. We use the standard off-policy
learning algorithm DDPG [40] with goal relabeling [1]. For methods without reward balancing, we
re-label the current goal with an achieved goal sampled uniformly from one of the future time steps
within the same episode with a probability of 0.9; otherwise, the original goals are used. For all
the environments, the ground-truth rewards are based on the L2 distance in the state space: R+ if
‖st+1 − sg‖ ≤ ε andR− otherwise. More details on algorithms, architectures, and hyperparameters
can be found in the Appendix.

We first evaluate all the methods in a set of simulated environments in MuJoCo [41], where both
current and goal observation are given by RGB-D images:

• Reacher: Teach a two-link arm to reach a randomly located position in 2D space.
• FetchReach: Move the end effector of the Fetch robot to a random position in 3D.
• RopePush: Push a rope from a random initial configuration into a target configuration.

The first two environments above are standard environments from Gym [42]. For the more com-
plex RopePush task, the robot needs to push a 15-link rope to a targeted pose, as shown in Figure
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1. To accelearate learning, we fix the orientation of the gripper and parameterize the action as
(x1, y1, x2, y2) ∈ R4, denoting the starting and ending position of one push from the gripper. We
generate the initial rope pose by giving the rope a random push from a fixed location. The goal poses
are generated by giving the rope two more pushes based on the initial push (these pushes are hidden
from the policy). The robot can give three pushes to push the rope to the goal pose. More details on
environments can be found in Appendix A.

The results are shown in Figure 3. We see that our method (Indicator+balance+Filter) achieves
nearly the same performance as the Oracle even though our method operates only from RGB-D
images and does not have access to the ground-truth state. For the RopePush environment, only
the Oracle and our method are able to learn to achieve the task to a reasonable accuracy. For AE,
VAE and DPN, the learned representation may not lead to a perfect reward function everywhere and
the agent will exploit states that yield a high proxy rewards, even though the goal is not achieved.
Instead, our method does not require learning a reward function and outperforms these baselines.

Figure 3: The final distance to goal of different methods in different environments throughout the training. The
observations are from the RGB-D images rendered in simulation.
In Appendix C, we perform an ablation where we removed either Balance or Filter from our method.
These experiments show that both Balance and Filter are important for optimal performance across
the environments tested. In Appendix D, we show experiments in which the ground-truth states are
used as inputs to the policy but are not used to compute the rewards. In these experiments, we also
see that our method has a similar performance to the Oracle and outperforms the other approaches.

7.1 Indicator Rewards with Real Images

Figure 4: An example observation image (top left) and
goal image (top right); final distance to goal (bottom).

Using RGB-D observations and goals, we train
a Sawyer robot for a 3-dimensional reaching
task. Figure 4 shows example observation and
goal images as well as the distance to goal
throughout training. As before, our method (In-
dicator+Balance+Filter) performs similarly to
the Oracle in terms of final goal distance; the
baseline of Indicator Rewards without balanc-
ing or filtering performs significantly worse and
diverges in the end due to many negative re-
wards, many of which are false negative.

8 Conclusion

In this work, we show that we can train a robot
to perform complex manipulation tasks directly
from high-dimensional images, without requir-
ing access to the ground-truth state in either the policy input or the reward function. We empirically
show that our method enables a robot to learn complex skills for manipulating deformable objects,
for which state estimation is often challenging. We also demonstrate that our method performs well
in the real world.

We provide a theoretical analysis which shows that the optimal policy under the indicator reward has
a bounded suboptimality compared to the optimal policy under the ground-truth reward. We hope
that our method will enable robot learning in the real world in cases where it is difficult to add extra
sensors or accurately simulate the environment.
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A Environment Details

During evaluation, for all environments, a binary sparse reward is given at each time step. A positive reward
R+ = 1 is given when the goal is reached, i.e. ||st+1 − sg|| ≤ ε and a negative reward R− = −1 is given
otherwise. Other environment details are summarized in Table 1.

For the RopePush environment, to save the time for computing initial and goal configuration, 10,000
initial configurations of the rope are pre-computed and cached which are later used for training.

Environment Observation
Dimension

Goal
Dimension

Rendered
Dimension

Action
Dimension

Horizon (T) ε (m)

Reacher 10 2 100x100x3 2 50 0.01
FetchReach 10 3 100x100x4 3 50 0.05
FetchPush 25 3 - 4 50 0.05
RopePush 45 30 100x100x3 4 3 0.1

VisualReacher (Sawyer) - - 100x100x4 3 25 0.1

Table 1: Summarized environment details. The observation and goal dimension are the dimensions of the low
dimension state representation when available. The rendered dimensions are the dimensions of the rendered
RGBD images used in the visual experiments.

Sawyer robot experiment details: The observation is recorded with an Intel RealSense D435 depth
camera. The goal observations are sampled by moving the robot arm to a uniformly sampled location in a
cuboid of diagonal length 1.3m. The episode was considered successful if the end effector moved to within
0.1 m from goal location at the end of the episode (we used a time horizon of 25 steps). The trained policy
performs position control and outputs end effector displacement within a range of -0.05m to 0.05m in each
direction.

B Hyper-parameters

All the experiments are run for two random seeds. The hyper-parameters of the training algorithm with
indicator rewards are summarized in Table 2. For all experiments with visual observation, the parameters
of the convolution layers are shared among the observation input and goal input. Due to the complexity of
the RopePush environment, a spatial softmax layer [1] with an output size of 32 is applied before the fully
connected layers.

C Ablation Analysis

We show different ablations of our methods in Supplementary Figure 1. We can see that, in the RopePush
environment, filtering is required for the policy to learn. On the other hand, the Reacher and FetchReach en-
vironments show that balancing is required for optimal performance. In all cases, Indicator+Balance+Filter
consistently performs better than all the ablated methods. Thus, these results show that both balancing
and filtering are important for optimal performance across a range of tasks.

With indicator rewards, we do not have any false positive rewards but may have many false negative
rewards. In Supplementary Figure 2, we show the accuracy of the given rewards using different approaches
with indicator rewards. The ground-truth rewards are calculated based on the ground-truth states which we
do not have during training and are only used for analysis. We can see that with a longer time horizon, reward
balancing is more important for the Visual Reacher and Visual FetchReach environment, which significantly
lower the false negative rates. On the other hand, both reward filtering and balancing are important in
the Visual RopePush environment. In all the cases, the accuracy of the rewards are improved a lot and
sometimes almost perfect with reward balancing and filtering and we can see that this is necessary for the
good performance of using indicator rewards.
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Parameter Value

shared
positive reward (R+) 1
negative reward (R−) -1

reward filtering (q0) 1
2

[
R− + γR+/(1− γ) +R+/(1− γ)

]

optimizer Adam [2]
learning rate 0.001
discount (γ) T−1

T
target network smoothing (τ) 0.98
nonlinearity tanh

state observation
replay buffer size 106

minibatch size 256
network architecture 3 hidden layers with 256 neurons for each

visual observation
replay buffer size 5 · 103

minibatch size 128
network architecture 4 convolution layers followed by 3 hidden lay-

ers with 256 neurons for each

Table 2: Summarized hyper-parameters.

Supplementary Figure 1: The success (top) and the final distance to goal (bottom) of different ablations of
our method.

D Learning with Indicator Rewards with State Input

The performances of different learning methods when learning with low dimensional state representation are
shown in Supplementary Figure 3. In all the environments, using indicator rewards with reward balancing
and filtering achieves comparable performances to Oracle. Compare this method to the Indicator baseline
which does not have reward balancing and filtering, Indicator+Balance+Filter achieves a better sample

2



Supplementary Figure 2: The false negative rate and the reward accuracy calculated from a batch sampled
from the replay buffer of different ablations of our method.

efficiency. Interestingly, in the FetchReach environment, the default distance threshold for receiving an R+

reward is set to 0.05. Thus, the policy that learns with this reward stops learning when the policy reach
to such a distance to the goal, while the policy learned with indicator rewards keep reaching closer to the
goals. This shows another benefit of using the indicator reward that the user does not need to tune the
hyper-parameter ε to achieve the best performance.

Supplementary Figure 3: The success (upper row) and the final distance to goal (lower row) of different
methods in different environments throughout the training. The success is defined as the mean probabily of
getting the R+ reward over all time steps. The final distance to goal is defined as the L2 distance to the
goal in the state space, in the last time step of the episode. The input to the policy is the low dimension
state representation.
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E Implementation Details of Baselines

• Auto Encoder (AE): The network architecture for the encoder is four convolutional layers each
followed by a max-pooling layer. The latent code as a dimension of 32. The decoder is four up-pooling
and up-convolution layers. The auto encoder is trained jointly with the RL agent by the reconstruction
loss of the observation images in the sampled transition. The learning rate is set to 0.001. We then
use cosine similarity in the learned embedding space to provide dense rewards, as similarly compared
in [3]. Specifically, assuming the learned encoding of an observation o is φ(o) after L2 normalization,
the reward will be r(o, og) = max(0, φ(o)Tφ(og)).

• Variational Auto Encoder (VAE) The VAE uses the same architecture and training procedure as
the AE baseline. Following [4], we use a variant of the VAE, β-VAE with β = 5. Following [4], given
the latent representation z, zg of the current observation o and the goal observation og, the rewards
are given by

r(o, og) = −||z − zg||2,
which is the negative of the Euclidean distance.

• Distributional Planning Network (DPN) [5] We use the released implementation [6] and use
the default hyperparameters. The network architecture for encoder is three convolutional layers, each
with kernel size 5, stride 2. After each convolutional layer, there is layer normalization and sigmoid
non-linearity. The output representation from CNN goes into a fully connected layer with latent code
dimension of 128. For each environment, we collected 20,000 transitions from a random policy and
performed 100,000 minibatch updates. The input dimension for each of the three environments is
the same as the Rendered Dimension column specified in Table 1. Once the DPN is pre-trained, the
representation is fixed during the training of the RL agent. Following [5], given the latent representation
z, zg of the current observation and the goal observation, the rewards are given by

r(o, og) = − exp(||dDPN(z − zg, δ)||1),

where

dDPN(x, δ)i =

{
1
2x

2
i for |xi| ≤ δ

δ|xi| − 1
2δ

2 otherwise
.

δ is set to 0.85. To avoid overflow of the rewards during the exponential, we normalize z and zg such
that they have a norm of 1 after the representation is trained.

F Algorithm of Learning with Indicator Rewards

The pseudocode of our full algorithm is shown in Algorithm 1.
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Algorithm 1: Learning with Indicator Reward Function

1 R: Replay buffer.
2 πθ: Policy to be learned.
3 πβ : Behaviour policy.
4 r̂ind : O ×Og → R: Indicator reward function
5 for i← 1 to Nepoch do
6 for j ← 1 to Ncycle do
7 Sample an initial observation o0 and a goal og
8 Collect τ = (o0, a0, ..., oT , aT ) following πβ and goal og
9 Store all transitions (ot, at, og, rt+1, ot+1, t) in R

10 for k ← 1 to Ntrain do
11 Sample a mini-batch B from the replay buffer
12 for each transition in R do
13 With probability p1: // p1 = 0.45
14 og ← ot+1

15 rt+1 ← r̂ind(ot+1, og) // rt+1 = R+

16 With probability p2: // p2 = 0.45
17 Sample a future time step t′ from {t+ 2, ..., T}
18 og ← ot′
19 rt+1 ← r̂ind(ot+1, og) // rt+1 ≈ R−
20 With probability p3: // p3 = 0.1
21 rt+1 ← r̂ind(ot+1, og) // rt+1 ≈ R−
22 If rt+1 = R− and Q(ot, og, at) > q0:
23 Discard this transition

24 Perform one step of optimization using off-policy RL
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